info@himagnet.com    +86 0592-5066207
Cont

Have any Questions?

+86 0592-5066207

Apr 27, 2023

Neodymium Magnet Properties

Grades[edit]

Neodymium magnets are graded according to their maximum energy product, which relates to the magnetic flux output per unit volume. Higher values indicate stronger magnets. For sintered NdFeB magnets, there is a widely recognized international classification. Their values range from 28 up to 52. The first letter N before the values is short for neodymium, meaning sintered NdFeB magnets. Letters following the values indicate intrinsic coercivity and maximum operating temperatures (positively correlated with the Curie temperature), which range from default (up to 80 °C or 176 °F) to TH (230 °C or 446 °F).

Grades of sintered NdFeB magnets:

N30 – N55

N30M – N50M

N30H – N50H

N30SH – N48SH

N30UH – N42UH

N28EH – N40EH

N28TH – N35TH

Magnetic properties[edit]

Some important properties used to compare permanent magnets are:

Remanence (Br), which measures the strength of the magnetic field.

Coercivity (Hci), the material's resistance to becoming demagnetized.

Maximum energy product (BHmax), the density of magnetic energy,[18] characterized by the maximum value of magnetic flux density(B) times magnetic field strength (H).

Curie temperature (TC), the temperature at which the material loses its magnetism.

Neodymium magnets have higher remanence, much higher coercivity and energy product, but often lower Curie temperature than other types of magnets. Special neodymium magnet alloys that include terbium and dysprosium have been developed that have higher Curie temperature, allowing them to tolerate higher temperatures.[19] The table below compares the magnetic performance of neodymium magnets with other types of permanent magnets.

Magnet Br
(T)
Hci
(kA/m)
BHmax
(kJ/m3)
TC
(°C) (°F)
Nd2Fe14B, sintered 1.0–1.4 750–2000 200–440 310–400 590–752
Nd2Fe14B, bonded 0.6–0.7 600–1200 60–100 310–400 590–752
SmCo5, sintered 0.8–1.1 600–2000 120–200 720 1328
Sm(Co, Fe, Cu, Zr)7, sintered 0.9–1.15 450–1300 150–240 800 1472
Alnico, sintered 0.6–1.4 275 10–88 700–860 1292–1580
Sr-ferrite, sintered 0.2–0.78 100–300 10–40 450 842

Physical and mechanical properties[edit]

news-220-180

Photomicrograph of NdFeB. The jagged edged regions are the metal crystals, and the stripes within are the magnetic domains.

Comparison of physical properties of sintered neodymium and Sm-Co magnets

Property Neodymium Sm-Co
Remanence (T) 1–1.5 0.8–1.16
Coercivity (MA/m) 0.875–2.79 0.493–2.79
Recoil permeability 1.05 1.05–1.1
Temperature coefficient of remanence (%/K) −(0.12–0.09) −(0.05–0.03)
Temperature coefficient of coercivity (%/K) −(0.65–0.40) −(0.30–0.15)
Curie temperature (°C) 310–370 700–850
Density (g/cm3) 7.3–7.7 8.2–8.5
Thermal expansion coefficient, parallel to magnetization (1/K) (3–4)×10−6 (5–9)×10−6
Thermal expansion coefficient, perpendicular to magnetization (1/K) (1–3)×10−6 (10–13)×10−6
Flexural strength (N/mm2) 200–400 150–180
Compressive strength (N/mm2) 1000–1100 800–1000
Tensile strength (N/mm2) 80–90 35–40
Vickers hardness (HV) 500–650 400–650
Electrical resistivity (Ω·cm) (110–170)×10−6 (50–90)×10−6

Send Inquiry